If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36x^2-21=0
a = 36; b = 0; c = -21;
Δ = b2-4ac
Δ = 02-4·36·(-21)
Δ = 3024
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3024}=\sqrt{144*21}=\sqrt{144}*\sqrt{21}=12\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{21}}{2*36}=\frac{0-12\sqrt{21}}{72} =-\frac{12\sqrt{21}}{72} =-\frac{\sqrt{21}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{21}}{2*36}=\frac{0+12\sqrt{21}}{72} =\frac{12\sqrt{21}}{72} =\frac{\sqrt{21}}{6} $
| 7^4x-15=33 | | 2v-10=-5(v+9) | | 4/5n-3/5n=1/5n | | 3-10m=203 | | x2+21=3x2–11, | | -5(v+5)=-3v-23 | | (3y=53)(7y-55) | | 5x3=3x5 | | -1/4x^2+45x-1584=0 | | 5(6-3d)=25 | | y-6y’+8y=0 | | 4x=6x-33 | | 4(x2)=52 | | x/15=0.14 | | x(5)+((x+40)3)=600 | | (3x-2)^7/3=128 | | X-0.58x=0 | | 28=5x7 | | -4(3-x)-9(5-9x)=0 | | 5x=9+4× | | 16m-10=m | | -2(x+6)-6x=4(x+3 | | 10n+3=6 | | x-1=7x-35-(6x-4) | | 0.4x20=8 | | 5.1=1.7x | | 8-5x=31 | | 8(c−14)=−40 | | 7y+4-5y=2y | | 5)x=+94.× | | x−80=10(2x+3)−15 | | x+1.62=9.18 |